MACHINE VISION SYSTEM
MYVIS

MYVIS Clearly Makes a Difference.
Lets You Build a Truly Superior Positioning System
The MYVIS is a high-performance vision system that combines advanced image processing technologies with many of the servo-control technologies accumulated by Yaskawa over the years as a pioneer in the field of servo drives. With a new line of MYVIS products, more versatile applications are now possible.

High-speed, High-precision Image Processing

- Instant Alignment (Positioning with No Retries Required)
- Non-stop Alignment
- Advanced, High-speed Gray Scale Pattern Matching
- High-speed Binary Blob Analysis
- Subpixel Detection for High-resolution Processing
- Template Masks to Ignore Areas that Vary
- Ambiguous Mark Detection
- Detection of Positioning Marks of Any Shape

Enhanced Hardware Processing

- Captures Images from Two Cameras Simultaneously
- Supports with Double-speed Scan Cameras
- Supports Cameras with External Trigger Shutter
- Supports Full-frame Shutter Cameras
- Supports both External and Internal Camera Sync Modes
- Captures New Images to Separate Frame Memory while Processing Previous Images
- Memory Capacity Holds up to 48 Images.
 (For use in managing NG images and saving raw images from multiple cameras.)
- Input Image Lookup Table
 (Brightness Conversion or Black/White Reversal during Image Capture)
- Image Freeze Display (Displays One Image from a Specified Camera)
- Variety of Monitor Display Modes

INDEX

Features ... 3
- High-speed, High-precision Image Processing
- Enhanced Hardware Processing

Application Examples 6
- Example 1: Non-stop alignment for a substrate chip mounter
- Example 2: Four-image alignment for a large FPD substrate

Yaskawa Alignment Systems 8
- Standalone MYVIS System with MECHATROLINK-II Communications
- PCI-bus Type MYVIS System with Personal Computer
- Components

Preparation of Application Software 10

Standard Specifications 11

Names of Parts: Standalone Unit Type 11

Dimensions .. 11

Product List ... 11

Standalone type: Three models

1. JEVSA-YV250 unit for 100-VAC power supply
2. JEVSA-YV250-E unit with CE marking for 24-VDC power supply
3. JAVSA-YV250S board:
 Requires 5-VDC power supply for board and 12-VDC power supply for cameras

 - Applicable monitors
 VGA (BW image and color graphic) or NTSC (BW)

PCI-bus type: JAVSA-YV250P-E model

- 5-VDC power supply from PCI bus and 12-VDC power supply for cameras
- Four boards can be mounted in a personal computer, so 16 cameras can be connected.
Instant Alignment (Positioning with No Retries Required)

Precise Positioning with Single Image Capture

The MYVIS positioning application software that is supported by Yaskawa considers total servo motion. The present positions of the servo's axes are constantly obtained and images are processed using the servo coordinates. This means that even if the center of the \(\theta \) axis should move in the X- and Y-axis directions, accurate \(\theta \) axis center coordinates are determined to achieve the target precision with a single positioning correction.

Basic Positioning Calculation

As shown in figure at right, two alignment mark coordinates are used to perform the calculation in units of servo axis movement. The inclination from the center of the \(\theta \) axis is corrected to move the mark to the reference point (target position).

Example:

In the figure at right, the left mark is being centered in the search area of the left-side camera (camera 1). This enables various combinations of processing, including processing center position of the marks and processing with four cameras.

Non-stop Alignment

In contrast to a system where the target object stops in front of the camera for processing, this system shortens the overall mount time with non-stop processing.

3.0-second Cycle Time
/Object stops in front of camera./

1.5-second Cycle Time
/Object does not stop in front of camera./

System Outline

- **Equipment**
 - MP2300 Machine Controller, Σ-III Series Servomotor, MYVIS YV250 Machine Vision System, halogen light illumination, XC-HR50(Double-speed, non-interlaced scan camera)
- **Specifications**
 - Move speed: 1,000 mm/s; camera shutter speed: 1/16,000 s; field of view: 20 mm
 - Image processing time: Image capture (16.7 ms) + image processing (5 ms) + data output (3 ms) = 24.7 ms
 - Positioning correction accuracy = 10 \(\mu m \)
 - Time chart (refer to page 5)
High-speed, High-precision Image Processing

High-speed Processing

Gray Scale Pattern Matching
An originally developed ASIC and search algorithm enable high-speed, highly accurate position detection.

The photo on the right shows an example of detecting the position of the alignment mark on the LCD glass substrate.

- Search area: 640×480 (full field of view)
- Template size: 110×110 pixels
- Search time: 5 ms

Binary Blob Analysis
An originally developed ASIC enables high-speed processing by creating binary data while capturing an image.

The photo on the right shows an example of the blob analysis results.

- Analysis area: 640×480 (full field of view)
- Number of blobs: 5
- Analysis time: 3 ms

Terminology
- **Feature values**: This refers to geometric features such as area, perimeter length, number of holes, angle of axes of inertia, center of gravity coordinates, edge point coordinates, roundness, and minimum/maximum radius.
- **Blob analysis**: A number is assigned to a single shape formed from a black or white mass, and then the information obtained from each mass is analyzed. In the field of image processing, these masses are called “blobs”. Feature values are calculated from these numbers. In the test photo, there are one white blob (large white mass) and four black blobs (round holes).

High-precision Processing

Subpixel Detection for High-resolution Processing
The graph at right shows the measurement data for subpixel and pixel units when the detection mark has been shifted about three pixels. While the pixel unit changes in a step-like pattern for each pixel, the subpixel unit changes linearly. Turning on the subpixel detection mode raises the resolution, for linear detection results. This provides an effective precision of 1/5 to 1/10 of the usual pixel unit.

Position Detection Using a Template Mask
The template mask can be set to accurately detect marks in which the appearance varies. The photo at right shows a template being used on the center of the round mark, and a test with a mark that has a center with a different appearance. Since the perimeter of the mark can be accurately imaged, ignoring the masked part, precise center coordinates can be detected.
Ambiguous Mark Detection

Accurate positioning is possible even when the appearance of a mark changes. The figure below shows an example. Ask your Yaskawa representative or local dealer for details on using the MYVIS in various applications.

Detection of Positioning Marks of Any Shape

Typical marks

(Example) When there is no mark, you can substitute a pattern.

Register the top part as a pattern, and instruct the system to detect the rightmost pattern.

Enhanced Hardware Processing

Built-in Hardware to Simplify Use of Special Cameras

A timing chart for non-stop alignment when using a double-speed XC-HR50 camera is shown on the right.

If an external trigger signal is input, the MYVIS outputs a shutter trigger pulse to the camera. After the image has been exposed for the set amount of time, a Vertical Drive (VD) signal is output and the image is captured. If using a Yaskawa MP controller with an LIO-01 module, no sensor for the external trigger is required, and you can select any position as the destination for the trigger signal.

Various Monitor Display Modes

<table>
<thead>
<tr>
<th>Type</th>
<th>Monitor Display</th>
<th>Description</th>
<th>Type</th>
<th>Monitor Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Screen</td>
<td></td>
<td>Ordinary screen.</td>
<td>3/4 Screen*</td>
<td></td>
<td>A separate image is displayed in the lower right quadrant.</td>
</tr>
<tr>
<td>Side by Side1*</td>
<td></td>
<td>The center portions of two camera images are shown side by side.</td>
<td>Mirror Mode</td>
<td>Camera 1, Camera 2, Camera 3, Camera 4</td>
<td>Reversed images are displayed from a pair of cameras, cameras 1 and 2 or 3 and 4. (On the left, cameras 1 and 2 are in mirror mode.)</td>
</tr>
<tr>
<td>Side by Side2*</td>
<td></td>
<td>The left half of one camera image and the right half of another are shown side by side.</td>
<td>Simultaneous Image Display (Two Images)</td>
<td></td>
<td>The image from each camera is reduced to 1/4 and displayed in real time. This is convenient for applications viewing multiple camera images simultaneously.</td>
</tr>
<tr>
<td>Up and Down*</td>
<td></td>
<td>The upper half of one camera image and the lower half of another are shown vertically.</td>
<td>Simultaneous Image Display (Four Images)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Images from Each Camera</td>
<td>Camera 1, Camera 2, Camera 3, Camera 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: Since the images in Side by Side, Up and Down, and 3/4 Screen are handled in the same manner as a single camera image, the image processing time is reduced.
Example 1: Non-stop alignment for a substrate chip mouter

Application Outline

1. **Picks up IC chips**
 - Picks up IC chips from the tray using four attachment nozzles.

2. **Detects positions of IC chips**
 - Chip camera (fixed) [External trigger shutter camera] Captures an image at the preset position within the camera's field of view while chips are moving and searches for any deviations in chip position.

3. **Places IC chips on substrate**
 - Corrects any deviation in the position of the substrate where IC chips are to be mounted and that of the chips while the chips are moving, and then mounts the chips on the substrate.

4. **Detects substrate position**

Main Image Processing Functions

1. Pattern matching
2. Sub-pixel edge detection

MYVIS Solutions

1. **Non-stop alignment**
 - The image is captured and the offset is calculated while the chip is in motion, so there is no need to stop the machine.

2. By using the automatic calibration tool, the coordinates of the moving stage can be in agreement with the coordinates of the detected image. That is to say, the coordinates obtained by image processing become the absolute coordinates of the machine system.

 Note: By using MECHATROLINK-II communications, the MYVIS can also receive the current position values of the servo axes while processing the data at high speeds.

3. **External trigger shutter cameras supported**
 - The image of fast-moving object can be captured at the preset position within the camera’s field of view with no deviation.
 - (Cameras for non-interlaced scanning are used to read all pixels.)

4. **High-precision subpixel detection mode (template matching)**
 - Detects positions with an effective precision of 1/5 to 1/10 of a pixel.

System Configuration

Application Examples

* : A device for mounting multiple chips onto a single substrate. Models with different numbers of nozzles are available.
Example 2: Four-image alignment for a large FPD substrate

Application Outline

- Devices that Commonly Use 4-image Alignment
 - Silk screen printing machines
 - Exposure machines
 - Board laminating machines

Average Processing

- Ideally speaking, the four positioning marks should form a perfect rectangle and should match perfectly when overlaid. In reality, looking at a large substrate that is a meter or more on one side on a micron level shows that it is not a parallelogram or even a trapezoid, but rather an irregular rectangle. Since it is not possible for the four points to form a perfect rectangle, average processing is used. The method used for average processing depends on the application specifications.

MYVIS Solutions

1. High-precision subpixel detection mode (template matching)
 - Detects positions with an effective precision of 1/5 to 1/10 of a pixel.
2. Linking with motion controller
 - High-precision corrections can be calculated by constant positioning mark detection with a mechanical coordinate system.
3. Shortened cycle times
 - Using simultaneous image captures, images from four cameras can be captured in the time normally required for two cameras.
4. A variety of alignment software is available for FPD panel fabrication.
5. Images from four cameras can be displayed in real time.
6. VGA monitors can display 16-color graphics and gray image.

Comparison of Image Capture Times

Conventional systems

Switching time

Image processing starts

33.3 ms 33.3 ms 33.3 ms 33.3 ms

MYVIS YV250

Reduced to 1/2

Switching time

Image processing starts

33.3 ms 33.3 ms

System Configuration
Yaskawa Alignment Systems

Standalone MYVIS System with MECHATROLINK-II Communications

With MECHATROLINK-II communications, the MYVIS can receive the current position data from several connected servomotors at a time. The MYVIS calculates the machine coordinates using the real-time data to ensure accurate positioning.

System Configuration

Machine controllers in the MP2000 series automatically recognize the devices linked by MECHATROLINK communications and allocate registers according to the functions of each device. One 32-byte data register is allocated for each input and the output of the MYVIS. With these registers, the MYVIS receives the current position data of each servomotor and sends the correction data. If the transmission cycle of the machine controller is set to 0.5 ms, 32-byte data will be sent and received according to the timing shown on the right.

Components

Machine Controllers for Maximum Servomotor Performance

MP2000 Series

With the MP2000 series machine controllers, ideal motion control can be achieved on a wide variety of machines. The controller series utilizes its advantages in three key areas:

- The ability to process large-capacity programs at high speed
- Complete synchronous control of multiple axes
- Improved efficiency in simplified portable programming

High-speed Multi-axis Control

The high-speed CPU used in the MP2000 series shortens the execution time of commands. Also, with the MECHATROLINK-II motion network (transmission speed: 10 Mbps) used in the MP2000 series, high-accuracy and high-speed motion control on multiple axes is realized.

High-level Synchronization

The MP2000 series can be used for synchronous control of multiple axes in various applications and remarkably improve machine precision.

High Operability

The easy-to-use Windows-based editing techniques of the MPE720 engineering tool enable efficient creation and editing of ladder programs. Also, to shorten the time required for design and maintenance, the efficiency of the methods used for system settings, program management, and displays has been improved.
All Yaskawa linear servomotors, which have been developed using the world’s latest linear servo drive technology, can be used to attain the best performance from your machine. Direct feedback of position data by linear scale signals is used to realize high-speed and high-accuracy positioning. Its simple structure allows cleanliness, low maintenance, and other advantages not possible with a conventional ball-screw system.

The direct-drive servomotors free you from maintenance since the gear-less structure has no vibration or backlash. Direct-drive servomotors are optimal for high-speed and high-accuracy positioning since they require less setup time. There is no degradation of accuracy due to secular change.

PCI-bus Type MYVIS System with Personal Computer

Using an MP2100 Machine Controller

The PCI-bus type MYVIS attains the same high performance as the standalone type and does not require a separate monitor. If using a PCI-bus type MYVIS with a Yaskawa machine controller from the MP2100 series, you can create user-application programs for the MYVIS and machine controller under the same development environment. (See the diagram on the right.)

Example of Program Configuration

- **Personal computer**
- **Application software**
- **Vision APIs**
- **Motion APIs**
- **Windows 2000 and Windows XP**
- **PCI bus**
- **MYVIS YV250P**
- **MP2100, MP2100M**
- **Control programs for other devices such as hard disk**

Servomotors for Maintenance-free, High-accuracy, and High-speed Operation

Linear Servomotors

Direct-drive Servomotors
Preparation of Application Software

For a standalone MYVIS
Prepare a program using C language for the Super H RISC engine processor and MYVIS program functions.

Program Development Environments
Super H RISC engine family C/C++ Compiler Package

Operating System
Microsoft Windows 2000 or Windows XP

The system menu is embedded in the MYVIS, so you can easily check the basic functions and performance of the image processing before preparing any application programs. For debugging, commercially available JTAG code debugger can be used. (Recommended: DH-1200 debuggers manufactured by Bitlran Corporation.)

For a PCI-bus type MYVIS
Prepare a program using any Windows programming languages and MYVIS vision APIs.

Program Development Environments
Microsoft Visual C++ Ver.6.0 or Visual C++.NET

Operating System
Microsoft Windows 2000 or Windows XP

A Windows-based MYVIS tool is available, so you can easily check the basic functions and performance of the image processing before preparing any application programs. The standard functions of Microsoft Visual Studio can be used for debugging.

Program Functions

More than 400 functions for the standalone YV250 and more than 200 for the PIC-bus type YV250P are available. The following table lists the most commonly used functions.

<table>
<thead>
<tr>
<th>Function Setting</th>
<th>Function</th>
<th>Function Name</th>
<th>AR Name to YV250 (PCI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera function</td>
<td>Selects the image input mode: Frame, Field, or Line.</td>
<td>vset_picture_mode</td>
<td>yvGetPictureMode</td>
</tr>
<tr>
<td></td>
<td>Selects the image input format for the camera: Normal, Non-interlace, or Double-speed non-interlace.</td>
<td>vset_progressive_mode</td>
<td>yvSetVideoFormat</td>
</tr>
<tr>
<td></td>
<td>Selects the synchronization mode for the camera: External or internal synchronization.</td>
<td>vset_camera_sync_mode</td>
<td>yvSetCameraSyncMode</td>
</tr>
<tr>
<td></td>
<td>Selects the operation mode for the random shutter camera: Sync-reset, sync-nonreset, single VD, or V reset.</td>
<td>vset_random_mode</td>
<td>yvSetRandomMode</td>
</tr>
<tr>
<td></td>
<td>Selects the trigger pulse width to be output to the camera. Range: 8 µs to 16 ms.</td>
<td>vset_trigger_width</td>
<td>yvGetTriggerWidth</td>
</tr>
<tr>
<td>Special functions for image input</td>
<td>Selects the image combine mode: vertical split, horizontal split, 3 : 1 split, or composite split.</td>
<td>vset_pic_divide_mode</td>
<td>yvSetPicDivideMode</td>
</tr>
<tr>
<td></td>
<td>Selects the mirror image mode: Disable, cameras 1 & 2, or cameras 3 & 4 cameras.</td>
<td>vset_mirror_mode</td>
<td>yvSetMirrorMode</td>
</tr>
<tr>
<td>External trigger signal synchronization</td>
<td>Selects whether to synchronize external trigger signals or not.</td>
<td>vset_trigger_mode</td>
<td>yvSetTriggerMode</td>
</tr>
<tr>
<td>Input image</td>
<td>Inputs an image from the camera and store it in the specified memory location.</td>
<td>vpic</td>
<td>yvPic</td>
</tr>
<tr>
<td></td>
<td>Inputs an image from the camera and store it in the specified memory location. Then, create the data of blob perimeter from binary image.</td>
<td>vpic_encode</td>
<td>yvPicEncode</td>
</tr>
<tr>
<td>Start input image</td>
<td>Starts inputting an image then switch to next process.</td>
<td>vpic_trigger</td>
<td>yvPicTrigger</td>
</tr>
<tr>
<td></td>
<td>Waits for the current input image to be completely processed.</td>
<td>vwait_pic_end</td>
<td>yvWaitPicEnd</td>
</tr>
<tr>
<td>Image data handling</td>
<td>Reads the image data in the specified region of the frame memory.</td>
<td>vget_raw_data</td>
<td>yvGetRawData</td>
</tr>
<tr>
<td></td>
<td>Sets the image data in the specified region of the frame memory.</td>
<td>vset_raw_data</td>
<td>yvSetRawData</td>
</tr>
<tr>
<td></td>
<td>Reads the image data between the set start and end points on the specified line.</td>
<td>vget_raw_on_line</td>
<td>yvGetRawOnLine</td>
</tr>
<tr>
<td>Image data pre-process</td>
<td>Rotates the image data in the range specified and write it in another memory location.</td>
<td>vrotate_picture_float</td>
<td>yvRotatePicture</td>
</tr>
<tr>
<td>Single template matching</td>
<td>Executes single template matching, and then return the number of matched points.</td>
<td>vmatch</td>
<td>yvMatch</td>
</tr>
<tr>
<td></td>
<td>Reads the coordinates by specifying the number of matched points in the template.</td>
<td>vget_trmpos</td>
<td>yvGetTrmPos</td>
</tr>
<tr>
<td></td>
<td>Reads the correlation score by specifying the number of matched points in the template.</td>
<td>vget_trmสาระ</td>
<td>yvGetTrmScore</td>
</tr>
<tr>
<td>Template list matching</td>
<td>Executes template list matching. Then, the ID numbers of the found elements, a list of the first character of the element names, and the number of elements are returned.</td>
<td>vtmread_chara</td>
<td>yvTrmReadChara</td>
</tr>
<tr>
<td></td>
<td>Reads the list of the correlation score of each element in the template list after matching.</td>
<td>vget_list_score</td>
<td>yvGetListScore</td>
</tr>
<tr>
<td></td>
<td>Reads the list of the positions for each element in the template list after matching.</td>
<td>vget_list_pos</td>
<td>yvGetListPos</td>
</tr>
<tr>
<td>Blob analysis</td>
<td>Analyzes connectivity in the specified region of the frame memory, using the data of blob perimeter from the binary image prepared by the hardware when the image is captured.</td>
<td>vanalyze_blob</td>
<td>yvAnalyzeBlob</td>
</tr>
<tr>
<td></td>
<td>Reads the number of detected blobs.</td>
<td>vblob_count</td>
<td>yvBlobCount</td>
</tr>
<tr>
<td></td>
<td>Selects a blob to be read out the data.</td>
<td>vset_blob</td>
<td>yvSetBlob</td>
</tr>
<tr>
<td>Blob features</td>
<td>Reads the blob position in the specified position mode.</td>
<td>vblob_pos</td>
<td>yvBlobPos</td>
</tr>
<tr>
<td></td>
<td>Reads the blob orientation in the specified orientation mode.</td>
<td>vblob_orient</td>
<td>yvBlobOrient</td>
</tr>
<tr>
<td></td>
<td>Reads the features for the area of the blob.</td>
<td>vblob_size</td>
<td>yvBlobSize</td>
</tr>
<tr>
<td></td>
<td>Reads the features for the diameter of the blob.</td>
<td>vblob_rad</td>
<td>yvBlobRad</td>
</tr>
<tr>
<td>Camera file selection</td>
<td>Selects the number of the camera file to be used for image input and processing.</td>
<td>vset_camera_file</td>
<td>yvSetCameraFile</td>
</tr>
<tr>
<td>Window selection</td>
<td>Selects the variable number of the window to specify the image processing region.</td>
<td>vset_wind</td>
<td>yvSetWind</td>
</tr>
<tr>
<td>Camera environment</td>
<td>Reads the pixel size (X, Y) of the specified camera file.</td>
<td>vget_pix_size</td>
<td>yvGetPixSize</td>
</tr>
<tr>
<td>Binary image conditions (BLREG)</td>
<td>Sets a threshold level for the specified BLREG(Binary Level Register).</td>
<td>vset_binary_level</td>
<td>yvSetBinaryLevel</td>
</tr>
<tr>
<td>Density conversion (LUT)</td>
<td>Sets the look-up table (LUT) number for the specified camera file.</td>
<td>vset_input_mode</td>
<td>yvSetLut</td>
</tr>
</tbody>
</table>

Third-party Trademarks in this Catalog
- CompactFlash is a registered trademark of the SanDisk Corporation, and the CompactFlash and CF logos and trademarks are licensed at no charge and royalty-free to CompactFlash Association (CFA) members.
- Ethernet is a registered trademark of the Xerox Corporation.
- Super H RISC engine family is a registered trademark of the Renesas Technology Corp.
- Windows, Visual Basic, and Visual C are trademarks or registered trademarks of the Microsoft Corporation.

This catalog may contain other proprietary names and copyright notices. Trademark symbols (TM and ©) do not appear with product or company names in this catalog.
Standard Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Standalone</th>
<th>PCI-bus type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>JEVSA-YV250</td>
<td>JEVSA-YV250P-E</td>
</tr>
<tr>
<td>Image processing</td>
<td>Gray scale pattern matching, binary image analysis</td>
<td></td>
</tr>
<tr>
<td>CPU</td>
<td>SH-4 (240 MHz)</td>
<td></td>
</tr>
<tr>
<td>Image processing LSI</td>
<td>Yaskawa-developed ASIC</td>
<td></td>
</tr>
<tr>
<td>Memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application program</td>
<td>512 KB flash memory</td>
<td>Computer application program</td>
</tr>
<tr>
<td>Backup memory</td>
<td>256 KB CMOS (for saving parameters)</td>
<td>None (Uses memory of computer.)</td>
</tr>
<tr>
<td>Template storage memory</td>
<td>CF cards (512 MB max.), Required as external memory (Sold separately.)</td>
<td>None (Uses memory of computer.)</td>
</tr>
<tr>
<td>Image memory-frame memory</td>
<td>640×480×8 bits×48 images</td>
<td></td>
</tr>
<tr>
<td>Image memory-template memory</td>
<td>4096×512×8 bits×1 image</td>
<td></td>
</tr>
<tr>
<td>Field memory for display</td>
<td>640×480×8 bits×2 images</td>
<td></td>
</tr>
<tr>
<td>Camera Interface</td>
<td>EIA or non-standard analog camera interface×4 (New EIAJ 12-pin connector), 12-VDC power supply, and 250 mA max. per camera.</td>
<td></td>
</tr>
<tr>
<td>Camera sync mode</td>
<td>Internal/external sync</td>
<td></td>
</tr>
<tr>
<td>Camera type</td>
<td>Normal camera (2:1 interface)</td>
<td></td>
</tr>
<tr>
<td>Random trigger shutter supported</td>
<td>Sync-nonreset, sync-reset, single VD or V reset, changeable trigger polarity and pulse width, and changeable WEN polarity.</td>
<td></td>
</tr>
<tr>
<td>A/D conversion</td>
<td>Two A/D conversion circuits (8-bit lookup table). Simultaneous image capture on two channels is possible.</td>
<td>—</td>
</tr>
<tr>
<td>D/A conversion</td>
<td>Three D/A conversion circuits (8-bit lookup table)</td>
<td>—</td>
</tr>
<tr>
<td>Monitor output</td>
<td>NTSC B&W (BNC) or VGA (15-pin D-sub)</td>
<td>Transfers image data by D/A transfer via PCI bus.</td>
</tr>
<tr>
<td>Image display</td>
<td>Full screen for one camera, composite screen for two cameras, simultaneous reduction for two or four cameras, mirror display, and binary display</td>
<td>Internal sync (YV250P)</td>
</tr>
<tr>
<td>Network</td>
<td>MECHATROLINK-II, Ethernet (10BASE-T)</td>
<td>—</td>
</tr>
<tr>
<td>Serial</td>
<td>RS-232C×2 ch (9 pin D-sub) 1200 bps to 115200 bps</td>
<td>—</td>
</tr>
<tr>
<td>Track ball</td>
<td>USB mouse</td>
<td></td>
</tr>
<tr>
<td>Parallel</td>
<td>16 general-purpose inputs and 4 specific inputs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16 general-purpose outputs and 2 specific outputs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Photocoupler insulation (Not for mode switching signal of specific inputs)</td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>100 VAC ±10% 50/60 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum rating: 30 VA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 VDC ±20% Current consumption: 1.2 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 VDC ±5%–3% Current consumption: 2.0 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 VDC ±1 V Current consumption: 0.1 A (not including current consumption used for cameras)</td>
<td></td>
</tr>
<tr>
<td>Approx. mass</td>
<td>2.0 kg</td>
<td>2.0 kg</td>
</tr>
<tr>
<td>Operating environment</td>
<td>Ambient temperature 0 to +50°C</td>
<td>0.5 kg</td>
</tr>
<tr>
<td></td>
<td>Humidity 35% to 90% (no condensation)</td>
<td>0.2 kg</td>
</tr>
</tbody>
</table>

Dimensions

Units: mm

Standalone*

- JEVSA-YV250(Unit type)
- JEVSA-YV250-E

- JAVSA-YV250S(Board type)

PCI-bus Type

- JAVSA-YV250P-E

(Half the size of a standard PCI)

Names of Parts: Standalone Unit Type

<table>
<thead>
<tr>
<th>Front panel</th>
<th>Rear panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power switch</td>
<td>Run mode switch</td>
</tr>
<tr>
<td>USB track ball</td>
<td>CF card slot</td>
</tr>
<tr>
<td>Camera connector</td>
<td>Video output</td>
</tr>
<tr>
<td>RS-232C</td>
<td>VGA monitor output</td>
</tr>
</tbody>
</table>

Product List

<table>
<thead>
<tr>
<th>Name (Short Name)</th>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit with standard specifications (YV250)</td>
<td>JEVSA-YV250</td>
<td>With a three-pin, 100-VAC power cable.</td>
</tr>
<tr>
<td>Unit with CE marking (YV250-E)</td>
<td>JEVSA-YV250E</td>
<td>Requires a 24-VDC power cable.</td>
</tr>
<tr>
<td>Board type (YV250SB)</td>
<td>JAVSA-YV250S</td>
<td>Requires 5-VDC and 12-VDC power cables.</td>
</tr>
<tr>
<td>PCI-bus type (YV250P)</td>
<td>JAVSA-YV250P-E</td>
<td>Requires one-half-size PCI slot in the computer.</td>
</tr>
<tr>
<td>Program-development software package for standalone MYVIS</td>
<td>JZVSA-FV250</td>
<td>Popy disk: contains a header file, a library, and a section definition file.</td>
</tr>
<tr>
<td>Program-development software package for PCI-bus MYVIS</td>
<td>JZVSA-CD250F</td>
<td>CD-ROM: contains a header file, APIs, a driver, tool software, and a user’s manual.</td>
</tr>
<tr>
<td>Communications software (MYVISCOM)</td>
<td>JZVSA-FV36</td>
<td>For data transmissions between the standalone MYVIS and computer.</td>
</tr>
<tr>
<td>Power cable for YV250-ES</td>
<td>JZVSA-C29S</td>
<td>For 24-VDC power supply, cable length: 2 m</td>
</tr>
<tr>
<td>Power cable for YV250SB*</td>
<td>JZVSA-C24</td>
<td>For 5-VDC and 12-VDC power supplies, cable length: 2 m</td>
</tr>
</tbody>
</table>

For more details, please visit our website to download dimensions in PDF or DXF file format.

* For more details, please visit our website to download dimensions in PDF or DXF file format.

Contact Yaskawa Controls, Co., Ltd. for orders.

The shape of the power connector for the JEVSA-YV250-E model is different from the one pictured.
In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply. Specifications are subject to change without notice for ongoing product modifications and improvements.

© 2004-2006 YASKAWA ELECTRIC CORPORATION. All rights reserved.